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We study the stretching and bending of line elements transported in random flows with 
known Eulerian statistics in two and three dimensions. By making use of a cumulant 
expansion for the log-size of material elements we are able to analyse the exponential 
stretching they exhibit in random flows and identify conditions under which it will and 
will not occur. The results are confirmed by our numerical simulation. 

We also examine the evolution of curvature in material elements and confirm by 
numerical simulation that it is governed by an appropriate version of the Pope 
equation. By modelling this equation as stochastic differential equation we are able to 
explain the appearance of a power-law tail in the probability distribution for large 
curvature observed by Pope, Yeung & Girimaji (1989) for surface elements. In two 
dimensions the appearance of the tail can indeed be attributed to the occurrence of 
events in which the material element undergoes contraction rather than stretching 
while subject to bending. In three dimensions the relationship between episodes of 
contraction and strong bending is less direct. This power-law tail allows us to reconcile 
the observed asymptotic stability, which we confirm here, of the powers and cumulants 
of the log-curvature with the unboundedness of powers of the curvature itself. 

1. Introduction 
There has long been interest in the problem of the behaviour of material elements 

carried along in random flows. The basic processes involved are the stretching, bending 
and twisting of line and surface elements. These phenomena are closely associated with 
the problem of non-diffusive mixing of fluids by turbulent flows (Ottino 1989, 1990). 
One widely recognized criterion for the mixing efficiency of a flow is the exponential 
stretching of line and surface elements in the flow, an effect first discussed by Batchelor 
(1952) and subsequently by others (Cocke 1969; Orszag 1970; Kraichnan 1974; Pope 
1988; Drummond & Munch 1990). There is also a close connection with the 
development of flame fronts (Pope 1988; Vassilicos & Hunt 1992), though the 
superposition of the local flame velocity on the background flow introduces extra 
complications in this case. 

More recently studied is the associated effect of the creation of curvature in material 
elements (Pope, Yeung & Girimaji 1989; Drummond & Munch 1990, 1991). Mixing 
after all involves folding as well as stretching and we can expect high curvature to be 
produced in the hinge of the fold. The nature of the curvature distribution for large 
curvature should therefore reflect the folding properties of the flow. The ultimate 
clarification of this point however requires an understanding of the global properties 
of the flow as well as of the local properties to which we restrict ourselves in this paper. 
For us the central question is the statistical relationship between bending and 
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stretching. Pope (1988) analysed this question by means of a relatively simple 
(Lagrangian) equation for the development of curvature in surface elements. 
Drummond & Munch (1991) showed that, not surprisingly, a similar equation holds 
for the development of curvature in line elements. Detailed simulations of the evolution 
of line and surface elements in random flows have been carried out. A brief summary 
of relevant results is that exponential stretching is verified and that stretching and 
bending of material elements occur in distinct regions. An important result is that the 
mean powers of the curvature increase without limit as time advances. Notwithstanding 
this result the average value of powers of the log-curvature appear to approach finite 
limits for large time (Girimaji 1991). The resolution of this seeming contradiction lies 
in the appearance of a power-law tail in the probability distribution for large curvature 
(Pope et al. 1989). In this paper we re-examine the evolution of both stretching and 
curvature of line elements in random flows both analytically and by numerical 
simulation. Of course much of what we say applies also to the motion and evolution 
of surface elements for which detailed simulations have been carried out by Pope et al. 
(1 989) and Girimaji (1 99 1). 

Our simulations are based on a velocity field comprising random waves, first 
introduced by Kraichnan (1970), that we have used in previous work. These model 
flows are not as realistic as the turbulence model used by Pope et al. but have the 
advantage that their parameters can be varied at will. This makes it possible to check 
on the operation of the simulation by choosing values that admit theoretical analysis. 
In particular, by modifying the velocity field appropriately we can demonstrate how 
long-range correlations can modify the exponential character of the stretching process. 

In $2 we briefly recall a few relevant facts about the random velocity field ensemble 
and give a few details about numerical procedures. We consider the Lagrangian theory 
of the stretching of line elements in 53 and show how the use of the cumulants of the 
log-size of the material element provides a clear explanation of the set of exponents, 
measured previously (Drummond & Munch 1990), that describes the exponential 
expansion of material elements. The simplest of these exponents is a standard 
Lyapunov exponent. The higher generalizations have been referred to as Moment 
Lyapunov exponents by Arnold, Kliemann & Oeljeklaus (1985), who give a rigorous 
discussion of conditions for their existence. Our discussion is more informal but, we 
believe, still revealing. We compare the theory with the results of our numerical 
simulation. In $4 we discuss the Pope equation for the development of curvature in 
material elements, paying particular attention to the case of two dimensions where the 
relationship between stretching and bending is especially clear. The analysis is verified 
by the results from our simulation. In $ 5  we show how the Pope equation viewed as 
a multiplicative stochastic differential equation can be modelled in a very simple way 
leading to a very clear indication that the existence of the probability distribution 
power-law tail for large curvature is indeed a consequence of events in which the 
material element shrinks rather than expands. We conclude with a summary and 
discussion of our results. 

2. Random flow model 
The model of random flows that we use in this paper was introduced by Kraichnan 

(1970) and has been described in detail in previous papers, as has the method of 
simulation (Drummond, Duane & Horgan 1984; Drummond & Munch 1990, 1991). 
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The velocity field is a sum of modes ui(x, t, k,  w, e), where the parameter set (k ,  w ,  e) 
comprises a wavenumber k, a frequency w and a phase e. Thus, 

1 N  

The parameter set in each mode is chosen independently from a predetermined 
distribution which leads to a velocity field correlation function 

G,(x - x', t - t') = ( u ~ ( x ,  t )  u~(x' ,  t ' ) )  
of the form 

k: +__(Xi Xj - Sij X') exp [ - $k: X'] exp [ - G,(X, T )  = 2 T'], (2) "'( D D - 1  

where X = x-x' and T = t -  t' and D is the dimension of space. We investigate cases 
with D = 2 and 3. In the above formula u,, is the r.m.s. velocity, k;' is the correlation 
length and w;' is the correlation time of the velocity field ensemble. For sufficiently 
large N the statistics of the velocity field are Gaussian so the two-point correlation 
function given above determines all other correlation functions. For later use we 
indicate the nature of the approximation to Gaussian statistics in more detail. This can 
be done conveniently by examining the four-point correlation function. An easily 
performed classification of the relevant terms arising from the mode expansion yields 
the result 

(ui(x1, tl> uj(x,, t2) uk(x3, t J  uL(x4, t4)) 

= ( ( N -  1)/W [G&- x , ,  f, - tz) G d x 3  - x4, t3 - t4)  

+ G,&, - x3, t ,  - f 3 )  G&, - x4, t ,  - t4) 

+ G&- x 4 , 4  - f4)  G,&, - x3,t ,  - t3)I 

+ (1/N) &jkl (x , ,  t , ,  ~ 2 ,  t2, ~ 3 ,  t3, x4, t4)* (3) 

There are two kinds of departure from the Gaussian structure. There is a weak 
breaking represented by the term Rift., which vanishes whenever the relative 
displacement of any two of its arguments is large. This type of term in the cumulant 
part of the correlation function does not represent a serious departure from Gaussian 
statistics. It is the kind of term to be expected in more realistic models of random flow. 
More serious is the strong breaking represented by the coefficient ( ( N -  1 ) / N )  
multiplying the disconnected terms which yield the Gaussian contribution of the four- 
point function. The significance of this term not being the full Gaussian term is that it 
results in an O ( l / N )  contribution to the cumulant part of the correlation function that 
is proportional to the disconnected part. It therefore destroys the desirable physical 
property that two-point correlations measured simultaneously in widely separated 
regions of the fluid should be independent of one another and identical to the two- 
point correlator measured on its own. Similar remarks hold for measurements 
separated in time and space. The strong breaking term therefore represents a long- 
range effect in both time and space. As such we can expect it to introduce long-range 
correlations into the Lagrangian statistics of a particle moving with the fluid and 
indeed we will see evidence for this in our simulation. It is intuitively obvious that this 
effect is stronger for the higher moments of the velocity field. Indeed it turns out that 
certain high-order cumulants we compute are sensitive to the number of components 
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in the velocity field even when N is as large as 100. We will exploit this sensitivity of 
the model to N in order to demonstrate how long-range correlations may affect higher 
cumulants. 

The Gaussian nature, for sufficiently large N ,  of the statistics of the velocity field, 
together with its reliance on a single scale in both time and space means it is not a very 
realistic model, particularly when compared to grid simulated turbulence models. 
However the phenomena we are investigating are rather general kinematic processes, 
the characteristics of which do not seem to depend very strongly on the details of the 
random flow. Indeed there is a case for supposing that much of what happens to 
material elements depends on the smallest scale structure of the flow. Under these 
circumstances the space and time scales in our model can be compared to the 
corresponding Kolmogorov quantities in more realistic models. Of course large-scale 
structures may also have an influence on the behaviour of material elements in the flow. 
Our model can be adapted to incorporate such features although the computational 
effort is correspondingly greater. 

In gathering statistics we found as in previous studies that it was necessary to make 
use of trajectory samples containing - 5 x lo4 to 2 x lo5 particles. Finally we mention 
that in this simulation we used a fourth-order Runge-Kutta integration procedure 
which seemed to work well and produce reliable results (Press et al. 1986). 

3. Stretching 

differential equation 
The position vector x of a particle carried along in the flow field u(x, t )  satisfies the 

2 = u(x, t) .  (4) 
We can generate a curve by making x depend on a parameter A. The material line 

element attached to the particle at x is I = ax/aA. It develops in time according to the 
differential equation 

where Kj is the velocity gradient tensor. That is 
l i =  W.I. 23 3' ( 5 )  

If we denote the length of the line element by 6 then I = & where t is the unit tangent 
vector along the curve. The important point for us is that 6 satisfies the Lagrangian 
equation 

where W(t) = %$titi. Of course in computing W(t), Kj can be replaced by its 
symmetric part, the rate of strain tensor. When W(t) > 0 the line element is expanding 
and when W(t) < 0 it is shrinking. Because the line element tends to align itself 
preferentially with the direction of the eigenvector corresponding to the maximum 
eigenvalue of the rate of strain tensor the mean value of W(t) is positive. However it 
is a matter of observation in various simulations that W(t) is negative for significant 
periods. We will see in a later section how this fact can influence the development of 
curvature. Of course our analysis applies equally well to surface elements although we 
do not deal with them explicitly in this paper. 

6 = W(06, (7) 

It is convenient to set 6 = &e@('t). The equation for $(t) becomes 

d( t )  = W(t). (8) 
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It has the solution (9) 

with the result that t(t) = toe$@) = to exp [ [ dt’ W(t’)]. (10) 
0 

(1 1) 

where ( X n ) c  denotes the nth cumulant of the variable X .  The first term in the exponent 
on the right-hand side of (11) is 

Now (k-(t>> = <k-Oe~‘t’) = t o e x P { ( ~ ) + ~ ( + z ) c + ~ ( $ 3 ) c + . . . }  1 , 

<$(t)) = dt‘( W(t’)) - t& as t + co. (12) 
0 

Here we assume that after the initial conditions are forgotten by the system the 
statistics of W(t) are time invariant and therefore ( W(t)) = r, where is a constant. 
In fact & is given by 

(13) 
1 r, = lim 7 1% {5(t)/t0>, 

and so may be identified with the Lyapunov exponent for the line element. The other 
terms in the exponent in (1 1) under appropriate assumptions also yield terms linear in 
t as t + 00. From the definition of the cumulant we see that 

($2)c = / dt’ [ dt”F(t’ - t”), 
0 0  

(14) 

where F(t’-t”) = ( W(t’) W(t”))c. From its definition 

F( t’ - t”) = ( W( t’) W( t”) ) - ( W( t’) ) ( W( t”)) . (1 5 )  

At large time separation the values of W(t’) and W(t”) are expected to be statistically 
independent, so that (W(t’) W(t”)) = (W(t’))( W(t”)) with the result that F(r)+O as 
r --f co. Given that there is a Lagrangian timescale characteristic of the fluctuations in 
W(t) it is reasonable to assume that the quantity yz is finite where 

It then follows that for large times t, 

(+z>>c = [dt‘[dt”F(t‘-t”) - yzt. 
0 0  

(17) 

Similarly ( $3)c  = [ dt’ 1: dt” 1; dt”’ G(t’ - t”, t’ - t”’), (18) 

where G(t’- t“, t’- t”’) = ( W(t’) W(t”) W(t”))c. From the definition of the cumulant 
function we have 

G(t’- t”, t‘- t”’) = ( W(t’) W(t”) W(t”’)) 

- (W(t’)) ( W(t”) W(t”’))c - ( W(t”)) (W(t’) W(t”’))c 

- ( W(t”’)) ( W(t’) W(t”))c - ( W(t’)) ( W(t”)) ( W(t”’)). (19) 
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FIGURE 1. The first four cumulants of the log-length for line elements in (a) two dimensions and (b) 
three dimensions. Model parameters are k,  = 1, q, = 1, 5, = 1, N = 256 (Gaussian case): 0, first 
cumulant; x , second cumulant; +, third cumulant; *, fourth cumulant. 
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P log (6”) (meas.) log (6.) (recons.) 

- 1.0 -2.1687 (16) -2.149 
-0.5 - 1.6409 (49) - 1.6453 
-0.25 -0.9682 (23) - 0.9683 

0.25 I .2859 (27) 1.2859 
0.5 2.9189 (77) 2.9173 
1 .o 7.414 (67) 7.361 

TABLE 1. Comparison of values at a given time of moments of the length calculated directly from the 
simulation and computed from the cumulants according to the theory 

The fact that G(t’- t“, t‘- t”’) depends only on time differences reflects the time 
independence of the statistics of W(t). It also implies that G(t’- t”, t’- t”’) will vanish 
whenever either or both of its arguments is large. Given the existence of the Lagrangian 
timescale it is then reasonable to expect that for large times t 

where 

( 93)c = 1 dt‘ 1 dt“ 1 dt“‘ G(t’ - t“, t’ - t‘“) - y 3  t, 

Y3 = Jm d 7 r  d7’G(7,7/). 
-cn -m 

Similar reasoning shows that all the higher contributions to the exponent on the right- 
hand side of (1 1) exhibit the same kind of asymptotic behaviour for large t .  For a 
general power p we have 

We can deal with these powers by replacing W(t) by p W(t) in the above analysis with 
the result that 

(5”) = m e p 9 .  (22) 

where 
1 rp = & + h * p + 3 y 3 p 2 + . . . .  

The simulation was carried out using the methods of previous papers. In figures 1 (a) 
and 1 (b) we exhibit the dependence of the first four log-cumulants of the length of the 
line elements on time in two and three dimensions respectively for the case N = 256. 
Note that the time dependence is indeed linear and that the first two cumulants 
dominate. In table 1 we compare the expected values at a given time of various 
moments of the length calculated directly from the simulation with the corresponding 
quantities computed from the cumulants according to the above theory. The agreement 
is clearly very close, thus confirming the consistency of the calculation. The dominance 
of the first two cumulants indicates that the distribution of lengths becomes log-normal 
to a good approximation, in line with the discussion of Kraichnan (1974) and the 
results of Pope et al. (1989). However the presence of the higher cumulants indicates 
that there is indeed a departure from log-normality. 

The behaviour of the model in three dimensions for the low value N = 8 is shown 
in figure 2. Because the Eulerian statistics of the model are time independent and 
invariant under spatial translations we expect the Lagrangian statistics to be time 
invariant also. We should not therefore see any breakdown of the natural cumulant 
structure at the level of Lagrangian two-point functions. We have no reason to believe 
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FIGURE 2. The first four cumulants of the log-length for line elements in three dimensions. Model 
parameters are k, = 1, wn = 1, 5, = 1, N = 8 (non-Gaussian case: 0, first cumulant; x , second 
cumulant; +, third cumulant; *, fourth cumulant. 

this will remain true for higher Lagrangian correlations however. Guided by the kind 
of strong breaking of the Gaussian property we encountered in the Eulerian statistics 
we might expect the presence for low values of N of terms of the form 

( W t )  Wt’) Wt”)>c - (1/N) ( W t )  W(t’>>c( W t ” ) )  (25) 

in the cumulant part of the three-point Lagrangian correlation function. Such terms 
give rise to a time dependence ($3)c - t2 .  From figure 3 we see that the first two 
cumulants of the log-length do indeed increase linearly in time though with slopes 
modified relative to the ‘Gaussian case’ N = 256. For the larger values of t we have, 
to good accuracy, ( {$( t ) }3)>c  oc t2 .  For ({$(t)}4) we expect from similar arguments 
contributions to its behaviour of the form - t2 and - t3 .  This too is consistent with the 
results in figure 2. 

We feel that this use of log-cumulants in the theory of line (and surface) elements in 
random flows provides a very clear and natural explanation of the occurrence of 
exponential growth. Essentially there are two conditions for this to occur, the obvious 
one of time invariance of the statistics and the more subtle one of rapid time- 
decorrelation of the rate of stretching function W(t). Indeed if a situation arose in 
which W( t )  exhibited anomalous long-range correlations, not necessarily as gross as 
those discussed above, that still precluded the convergence of the integrals over the 
cumulant correlation functions required for the computation of the y n  then the log- 
cumulants would no longer develop linearly in time. Correspondingly the average 
powers of the length would no longer exhibit pure exponential growth. They might well 
increase faster than exponentially. It would be interesting to explore models with such 
anomalous behaviour even though we do not expect it to occur in real turbulence. 
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4. Curvature evolution 

in a surface element. It has the form 

where K is the extrinsic curvature of the surface element associated with the principal 
direction e, and N, is the normal to the surface element. We have used the notation 

In a previous paper Pope (1988) deduced an equation for the evolution of curvature 

K = - (2Kje ,e j -q ,NiNj)~+ qjkNiejek,  (26) 

An equation for the evolution of curvature in line elements was obtained by 
Drummond & Munch (1991). It has a form very similar to the above, namely 

where we have again used K for the curvature of the line element, ti is the tangent vector 
of the line element and the normal is defined in the usual way as the derivative of the 

K = - (2qj t i t j -  J4&n,nj)K+ qjknitjt,, (28) 

t i  

where s is distance along the curve of which the line element is a part. 
Both (26) and (28) have the form 

K = -A(t)K-kB(t), (30) 
where A(t )  is computed from the rate of strain tensor and B(t) is computed from its 
derivative. A formal solution of this equation is 

where a is the initial value of the curvature. 
It is intuitively clear that B(t), which is associated with the bending properties of the 

flow, can be viewed as the term which produces curvature in the material elements, 
while A(t) ,  which is associated with the stretching properties of the flow when it is 
positive, can act to suppress curvature. It is known that (A(t)) > 0 so its average effect 
is indeed suppressive. In this sense the resulting curvature distribution is a competition 
between the bending and stretching terms in (30). Understanding the nature of the 
resulting distribution is the central problem of curvature generation in random flows. 

The situation is superficially paradoxical in that while various quantities such as 
powers of the logarithm of the curvature acquire equilibrium values at large times, 
certain others such as powers of the curvature itself, do not. The former fact suggests 
that an equilibrium probability distribution for curvature is attained while the latter 
seems to suggest the opposite. Work by Pope et al. (1989) resolved the situation by 
showing that a power-law tail develops in the distribution. The existence of this tail is 
associated with the occurrence of events in the history of the material element in which 
it is subject to bending as a result of the B(t)-term in (30) while undergoing contraction 
as a result of A(t)  acquiring negative values. In this paper we reconfirm the situation 
just described and present simple models of (30) which show both analytically and 
through simulation the appearance of the power-law tail in the curvature probability 
distribution. 

Since the two-dimensional situation is particularly simple we will begin with that 
case. In two dimensions only line elements are of significance for the purposes of 
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P a 

1 50 
100 
200 
300 
500 

2 50 
100 
200 
300 
500 

3 50 
100 
200 
300 
500 

4 50 
100 
200 
300 
500 

co 

03 

co 

02 

TABLE 2. Comparison between the 

t = 0.50;’ 

-0.3020 
-0.3014 
-0.3013 
-0.3012 
-0.3012 
-0.3012 

0.9082 
0.9059 
0.9053 
0.9051 
0.9051 
0.9050 

-0.02792 
- 0.021 60 
- 0.0203 1 
-0.01965 
-0.02023 
- 0.0 1940 

0.07877 
0.06354 
0.06244 
0.05933 
0.06616 
0.05803 

t = LOW,’ 

-0.8297 
-0.8220 
- 0.8 187 
-0.8179 
- 0.8 171 
- 0.8 170 

2.61 1 
2.551 
2.521 
2.513 
2.508 
2.504 

-1.121 
- 7.940 
- 5.929 
- 5.359 
-4.984 
-4.595 

4.965 
3.512 
2.256 
1.899 
1.655 
1.343 

t = 1.5~;’ 

- 1.304 
- 1.309 
- 1.308 
- 1.307 
- 1.306 
- 1.303 

4.111 
4.150 
4.143 
4.132 
4.123 
4.091 

- 1.829 
- 2.046 
-2.029 
- 1.956 
- 1.903 
- 1.612 

6.937 
7.719 
7.785 
7.404 
7.279 
4.948 

first four log-cumulants for ~ ( t )  and [ ( t )  at a sequence of times 
(the latter indicated by a = a) 

measuring curvature. The relevant equation then is (28). Since the flows with which we 
are concerned are incompressible we have 

q i ( t )  = &&t) ti tj + qj ( t )  n,nj = 0. (32) 
It follows then from (28) that 

A( t )  = 3W(t). (33) 
We see therefore that in two dimensions A(t) is indeed very directly related to the 
stretching of the line element. More precisely the curvature development is related to 
the third power of the line element. This becomes particularly clear if we use (33) to re- 
write (31) in the form 

(34) 

Equation (34) allows us to test the internal consistency of our integration procedures. 
When a is sufficiently large we can neglect the second term for some initial range of 

~ ( t )  = a (4;J3 - + dt’ (gy B(t‘). 

time, with the result 

It follows that in this initial time period the log-cumulants of ~ ( t )  are simply related to 
those of ((t). The pth log-cumulant of K ( t ) / a  is (- 3)” times the log-cumulant of t(t). 
For a range of values of the initial curvature a the comparison between the first four 
log-cumulants for the two sets of quantities at a sequence of times, is exhibited in table 
2. The log-cumulants of [(t) modified in the appropriate way by the factor (- 3)” are 
indicated by the choice a = co. Clearly the agreement is rather good, especially for the 
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FIGURE 3. The dependence on time t of -a2< for various values of the initial curvature. 

+, a = 500; X ,  a = 200; 0, u = 100; -, a = 50. 

earlier times and the lower-order cumulants. Note that it is more convenient to 
compute the log-cumulants rather than simply the powers of the logarithms of the two 
quantities in order to reveal the relationship between them. 

Another test which makes use of (34) is to examine the easily computed quantity 5, 
given by 

c =  1og(:(?T). 

From (34) we see that 

6 = log (1 +: [ dt’ (yr B(t’)). (37) 

Strictly the argument of the logarithm should be enclosed in modulus signs since as it 
stands it may be negative as well as positive. However we are interested in situations 
in which a is very large and positive so the difference will not matter. The issue on 
which we will focus is the dependence of (6) on a. Because expected values of 
quantities that contain odd powers of B(t) vanish we expect 6 - O(a-’)>. Figure 3 
exhibits the dependence of -a2< on time 0 < t < 1 for a range of values of a. Because 
of the coincidence of the graphs for the different a-values it is fairly clear that within 
errors the predicted a-dependence is verified. 

If we follow the development of the log-curvature for long periods of time we find 
that for any initial value of the curvature, they each tend to an asymptotic limit. The 
magnitude of the limiting value increases rapidly with the order of the cumulant. These 
higher-order cumulants tend to achieve their limiting value at later times than the low- 
order cumulants. This is consistent with the results of Girimaji (1991) on the powers 
of the log-curvature for surface elements. An example of this behaviour for the first six 
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moments in the two-dimensional case is shown in figure 4 for an initial value of the 
curvature of look,. Identical limiting behaviour for the six moments is observed for 
zero initial curvature. 

For line elements in three dimensions we see from (28) that 

A(t )  = 2 yi ti t j  - yi ni ni. 
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FIGURE 4. The first six powers of the log-curvature as a function of time t in two dimensions. Initial 
curvature a = 100. (a) 0, first power; x , second power. (b) 0, third power; x , fourth power. (c) 
0, fifth power; x ,  sixth power. 

t Order Cum. log-length Cum. log-curv. Ratio Error 

0.1 1 0.00497 -0.00994 2.001 0.005 
2 0.00332 0.0233 7.004 0.0033 

0.2 1 0.0194 -0.0388 2.000 0.02 
2 0.0 130 0.0910 7.000 0.013 

0.3 1 0.0421 -0.0843 2.000 0.045 
2 0.0282 0.197 6.997 0.03 

0.4 1 0.0715 -0.143 2.000 0.08 
2 0.0479 0.335 6.995 0.053 

0.5 1 0.106 0.2 12 2.000 0.125 
2 0.0709 0.496 6.991 0.083 

0.6 1 0.144 -0.287 2.000 0.18 
2 0.0963 0.673 6.986 0.12 

0.7 1 0.183 0.367 2.000 0.24 
2 0.123 0.860 6.980 0.16 

0.8 1 0.224 - 0.449 2.000 0.32 
2 0.151 1.05 6.972 0.21 

0.9 1 0.266 - 0.532 2.000 0.405 
2 0.180 1.25 6.964 0.27 

1 .o 1 0.308 -0.616 2.000 0.5 
2 0.209 1.45 6.954 0.33 

TABLE 3. Results of the simulation for the log-cumulants of length and curvature, with a = 500k, 
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If we introduce the bi-normal mi, orthogonal to both ti and nt, we can use the 
incompressibility of the flow to obtain 

In neither (38) nor (39) is the structure of A(t)  as directly related to the stretching 
A( t )  = 3W(t)+ K, ( t )mimi .  (39) 
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FIGURE 5. The first six powers of the log-curvature as a function of time t in three dimensions. Initial 
curvature a = 0. (a) 0, first power; x , second power. (b) 0, third power; x , fourth power. (c) 0, 
fifth power; x , sixth power. 

coefficient W(t) as it is in the two-dimensional case. This point has also been 
emphasized by Ishihara & Kaneda (1992). If we examine the behaviour of the 
contributions to ( A ( t ) )  for short times, we find to O(t) 

< W(t)> = (ti K, t j )  = ;< q , ( o ) 2 )  t, (40) 

and (ni F&nr) = 0. (41) 

(log (./a)) = -2 log 6 = $( J+&(0)2> t2, (42) 

((log (.la>>”c = 7((log 0 ° C  = &( %,(o)2) t 2 .  (43) 

In table 3 we show the results of the simulation for these log-cumulants in the time 
interval 0 < t < 1, with a = 500k,. Clearly they support the above analysis. It is 
interesting that the ratios (log(K/a))/(log[) = 2 and ( ( l o g ( K / a ) ) 2 ) , / ( ( l o g ~ 2 > c  = 7 
are more accurately maintained than the absolute values predicted by the short-time 
approximation. It may be that the ratios hold for some more basic reason, though we 
do not know what it is. 

For longer times the pattern of time dependence for the log-cumulants of the 
curvature that was established for the two-dimensional case is effectively repeated in 
three dimensions for the curvature of line elements. The results for the first six 
moments with an initial value of zero for the curvature are shown in figure 5. 
Completely identical limiting results are achieved with any value for the initial 
curvature. Of course the detailed analysis is somewhat different since the very close 

This last result implies that for short times we expect from (31) to find that 

the initial curvature a being assumed large. Under the same circumstances we find 
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relationship between stretching and curvature suppression is not repeated. As noted 
above for line elements in three dimensions (Ishihara 8z Kaneda 1992) we cannot use 
incompressibility of the flow to infer the same close connection between stretching and 
curvature suppression as exists in two dimensions. Nevertheless the quantity A( t )  must 
have statistical properties in three dimensions similar to the corresponding quantity in 
two. We will see in the following section that the propensity of A( t )  to acquire negative 
values, which at least qualitatively is associated with periods of contraction for the 
material element in question, inevitably implies the existence of a power-law tail in the 
probability distribution for the curvature with the consequence that certain moments 
of the curvature diverge even though the moments or cumulants of the log-curvature 
remain finite. 

5. Stochastic model of the curvature equations 
In order to understand the way in which (30) gives rise to a power-law tail for the 

curvature distribution it is illuminating to model the equation by means of a stochastic 
differential equation in which A( t )  and B(t) are represented by stochastic processes. 
Such an equation has been investigated in Drummond (1992). For our purposes it is 
sufficient to proceed in the following way. We introduce a stochastic process y(t)  which 
takes values in a vector space (possibly one-dimensional). The coefficients A and B are 
then thought of as being functions of y(t). The process y( t )  which is assumed to be 
stationary in time is characterized by a probability distribution Po(y) and a correlation 
time 7. If we define the statistical ‘Laplacian’ for y to be A ,  where 

where E[XI Y ]  means the expected value of X subject to the condition Y,  then the 
probability distribution Po(y) satisfies 

AtP,(Y> = 0, (45) 

where At is the Hermitian conjugate operator to d. The theory of Markovian stochastic 
differential equations tells us that (30) implies that P(y ,  K ) ,  the stationary joint 
distribution of y and K (if it exists), satisfies 

(46) 
a 

d + P ( y , K ) + K ( A ( y ) K - B ( y ) ) F ( y , h - )  = 0. 

We now specialize to models in which y holds its value for discrete time intervals. 
Models of this kind have been studied more extensively in Drummond (1992). At any 
given point in time the value of y changes with a constant probability per unit time. 
This means that the lengths of the time intervals are distributed according to the 
Poisson distribution. We assume the mean length of a time interval is 7. Within a time 
interval the probability distribution of y is Po(y), the values of y in distinct intervals 
being independently distributed. Under these circumstances it is easy to show that 

and 
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In the interests of generating simple models that are easily investigated either by 
analytical or numerical methods we specialize further and assume that y takes on only 
a finite number of discrete values {y,], n = 1,2.. . N with corresponding probabilities 
(4,). That is y(t)  is a discrete Markov chain in continuous time. We set A ( y , )  = a, and 
B( y,) = b,. The joint probability distribution becomes p , ( ~ )  and satisfies the equivalent 
of (46), namely 

where we have used a matrix notation in which 

and 

In order to achieve a completely explicit model we analyse the case of two components, 
with a, = y, a, = p, b, = p, and b, = -p. We will also assume that q, = q, = f. The 
equations for p I ( ~ )  and p 2 ( ~ )  become 

(52) 

The analysis of this equation is not difficult, and it is easily checked that the solution 
has the analytical form 

where a = 1/27y and b = 1/27p. In order to obtain the precise form of the probability 
distribution it is necessary to take into account the signs of the various parameters. 
There is no loss of generality in assuming that ,!I > 0. If now we assume that y > 0 and 
T > 0 then it is clear from (30) that in the range K > Ply ,  K < 0 and in the range 
K < -p /p ,  K > 0. That is, in both cases K moves towards the region - p / p  < K < P l y .  
Once K is inside this range K can fluctuate in sign. In the limit of large times when the 
support for the probability distribution for K will be confined to this range. Taking into 
account the positivity and correct normalization of the probability distributions we 
find for - p / p  < K < /3/y 

(54) 

where (55) 

For K outside this range the probability distributions vanish identically for the reasons 
indicated above. The total probability distribution for K is P(K = p , ( ~ )  +P,(K). 

The interpretation of these results in terms of our original problem is that in 
circumstances, were they to exist, where the stretching coefficient A( t )  remains positive 
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throughout its fluctuating history, the curvature distribution would be sharply 
suppressed for large values of the curvature and all moments of the curvature would 
settle down to finite values. A more realistic assumption is that A( t )  can fluctuate to 
negative values. We can mimic this effect by setting y = -a where 01 > 0. Under these 
circumstances the nature of the curvature probability distribution changes radically. 
We can understand what happens by moving y continuously from positive to negative 
values. As y passes through zero, two things happen simultaneously. First the upper 
end of the support range for the probability distribution reaches infinity and passes 
through it to attain negative values. Second the power of the singularity in the analytic 
form of the probability distribution at this displaced ‘end point’ ceases to be 
integrable. We have from (53) 

P 1 ( K )  * @+aK)-+ (56) 

This is clearly non-integrable. The resolution of the difficulty is that infinity takes over 
the role of the displaced end point and the support range for the probability 
distribution becomes - p / p  < K < co. The reason that this is possible is that the 
singularity of the analytic form of the distribution at K - GO has now become 
integrable. From (53) we see that 

P 1 ( K )  - &(K)  - K b - l ,  (57) 

where c = 1/2~01. In its new form of the probability distribution vanishes for 
K < - p / p ,  while for K > - p / p  it is given by 

(58)  
-“-’@ + p K ) b  

(/3 + O 1 K ) p  (/3 + p.) b - 1 )  , 

where (59) 

To mimic a situation in which ( A ( t ) )  > 0 we require 01 < p, thus ensuring that 
c > b and hence the integrability of the infinite end point. If in a rather unphysical way, 
this condition were broken then we would conclude that there was no stationary 
distribution for K and the associated K-diffusion process would result in all material 
elements becoming infinitely curved ! Rejecting this possibility we find that the 
consequence of the intermittent reversal of sign of A(t)  is the appearance of a power- 
law tail in the curvature distribution as indeed seems to be borne out in the results of 
numerical simulations. 

We can see how distributions of the kind resulting from the above stochastic model 
can lead to the features observed for the moments and cumulants of the logarithm of 
the curvature in various simulations. (Where appropriate we will interpret K to mean 
1 ~ 1 . )  For example we could make a very crude model for the distribution of K along the 
following lines. Set 

O < K < 1  

1 < K < co. P(K) CC { lY 
I / K + l ,  

The choice of K = 1 as the splitting point between the body and tail of the distribution 
is arbitrary and only made for the purposes of illustration. With this model distribution 
we can calculate the moments of  log^ to obtain 
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We see then there are two contributions to   log^)^) both of which increase rapidly 
withp. That from the body of the distribution alternates in sign while that from the tail 
is positive and for sufficiently small h = c - b will dominate at large p .  If we assume this 
dominance of the tail then we find 

((logK)p)/((logK)p-l) = p / h .  (62) 
Of course it is not clear where in practice this asymptotic ratio sets in. This is an 

interesting problem in its own right both for the stochastic model and the original flow 
simulations themselves. However if we examine the numerical results for the line 
element log-curvature in three dimensions we find 

((log K)6) ((10gK)5): ((log K)4): ((1~)gK)~) = 1280: 175: 31 : 6.15 

suggesting a value h = 0.83 f 0.05. The value of the corresponding quantity for surface 
elements measured by Pope et al. (1989) was 0.55. 

The simple stochastic model discussed above is very useful because it can be solved 
in such an explicit fashion. However it is rather too simple in that it forces a correlation 
between the stretching and bending terms that is unrealistic. This is why the power-law 
tail occurs only for positive K. It is easy to build more complex models not subject to 
such constraints (Drummond 1992) that exhibit the same properties. 

6. Conclusions 
In this paper we have shown that the exponential increase of the powers of material 

line elements in random flows can be understood in terms of the cumulant expansion 
of the logarithm of the line element length. This is a generalization of Kraichnan’s 
approach in which he examined the behaviour of line elements in the Markovian limit 
of random flows. Our approach not only shows that the result can hold even when the 
Markovian limit is not appropriate it also shows that circumstances can arise in which 
the result may not hold. These circumstances typically involve correlations of 
anomalously long range in time for the log-length of the line elements. We illustrate the 
occurrence of such a situation by using a flow field ensemble for which the Gaussian 
statistics are severely broken. 

The version of the Pope (1988) equation appropriate to the time development of 
curvature in material line elements (Drummond & Munch 1991) was examined in 
detail. For the case of two-dimensional flow the connection between element stretching 
and curvature suppression is particularly close. We were able to confirm this 
relationship directly in the simulation. In three dimensions the relationship is slightly 
more indirect, nevertheless it is qualitatively similar. There can be no doubt about the 
correctness of the Pope equation. Its implications for the probability distribution of the 
relevant curvature quantities was further explored by modelling the equation as a 
stochastic differential equation (Drummond 1992). We showed explicitly in a simple 
case that the power-law tail for the probability distribution of curvature is indeed the 
consequence of events in which the material element shrinks rather than expands. This 
is consistent not only with the anti-correlation of curvature production and expansion 
observed by Drummond & Munch (1991) but also with the observations of Pope et al. 
(1989) of the power-law tail in simulation studies and the discovery by Girimaji (1991) 
of the finiteness of moments of the log-curvature of surface elements. In this paper we 
confirmed that in two and three dimensions the moments of the log-curvature of line 
elements also stabilizes at a finite value for large times. 

The conclusion from the above is that the nature of curvature generation for 
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material elements in random flows or turbulence is reasonably well understood. There 
are some obvious ways in which the studies can be taken further. Clearly these 
methods, both simulation and theory, can be applied to deterministic but chaotic flow 
studies which are the basis of much thinking on mixing in flows. The preliminary work 
on torsion production in line elements (Drummond & Munch 1991), of importance to 
magnetic field behaviour (Moffatt 1978 ; Drummond, Duane & Horgan 1986) merits 
further investigation for random, turbulent and deterministic flows. A remaining 
question is the implication for the global behaviour of lines and surfaces in random 
flows, of the local results so far obtained. For example, the power-law tail in the 
curvature distribution must have something to reveal about the nature and frequency 
of fold-hinges in the history of lines and surfaces in a mixing flow. 
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